Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Further Experiments on the Effects of In-Cylinder Wall Wetting on HC Emissions from Direct Injection Gasoline Engines

1999-10-25
1999-01-3661
A recently developed in-cylinder fuel injection probe was used to deposit a small amount of liquid fuel on various surfaces within the combustion chamber of a 4-valve engine that was operating predominately on liquefied petroleum gas (LPG). A fast flame ionization detector (FFID) was used to examine the engine-out emissions of unburned and partially-burned hydrocarbons (HCs). Injector shut-off was used to examine the rate of liquid fuel evaporation. The purpose of these experiments was to provide insights into the HC formation mechanism due to in-cylinder wall wetting. The variables investigated were the effects of engine operating conditions, coolant temperature, in-cylinder wetting location, and the amount of liquid wall wetting. The results of the steady state tests show that in-cylinder wall wetting is an important source of HC emissions both at idle and at a part load, cruise-type condition. The effects of wetting location present the same trend for idle and part load conditions.
Journal Article

Soy Biodiesel Oxidation at Vehicle Fuel System Temperature: Influence of Aged Fuel on Fresh Fuel Degradation to Simulate Refueling

2017-03-28
2017-01-0809
An experimental study of the effects of partially-oxidized biodiesel fuel on the degradation of fresh fuel was performed. A blend of soybean oil fatty acid methyl esters (FAMEs) in petroleum diesel fuel (30% v:v biodiesel, B30) was aged under accelerated conditions (90°C with aeration). Aging conditions focused on three different degrees of initial oxidation: 1) reduced oxidation stability (Rancimat induction period, IP); 2) high peroxide values (PV); and 3) high total acid number (TAN). Aged B30 fuel was mixed with fresh B30 fuel at two concentrations (10% and 30% m:m) and degradation of the mixtures at the above aging conditions was monitored for IP, PV, TAN, and FAME composition. Greater content of aged fuel carryover (30% m:m) corresponded to stronger effects. Oxidation stability was most adversely affected by high peroxide concentration (Scenario 2), while peroxide content was most reduced for the high TAN scenario (Scenario 3).
Journal Article

Investigating the Effects of Multiple Pilot Injections on Stability at Cold Idle for a Dl Diesel Engine

2009-04-20
2009-01-0612
An experimental investigation of combustion cycle-by-cycle stability under cold idling conditions has been carried out on a Dl diesel to examine the influence of pilot fuel injection strategy. The engine is a single cylinder variant of a multi-cylinder design meeting Euro 4 emissions requirements. The engine build had a swept volume of 500cc and a compression ratio of 18.4:1. Work output and heat release characteristics have been investigated at test temperatures of 10, 0, −10 and −20°C and speeds in the range from 600 to 1400rpm. At the lowest temperature, −20°C, stability is sensitive to the timing of main injection and is prone to deteriorate with increasing engine speed. The influence of the number of pilot injections and pilot fuel quantity on stability has been explored. Best stability was achieved by increasing the number of pilot injections as temperature is lowered, from one at 10°C to two at −10°C and between two and four at −20°C.
Technical Paper

Flow-Acoustic Coupling in Quarter-Wave Resonators Using Computational Fluid Dynamics

2001-04-30
2001-01-1430
Quarter-wave resonators are commonly used as acoustic silencers in automotive air induction systems. Similar closed side branches can also be formed in the idle air bypass, exhaust gas recirculation, and positive crankcase ventilation systems of engines. The presence of a mean flow across these side branches can lead to an interaction between the mean flow and the acoustic resonances of the side branch. At discrete flow conditions, this coupling between the flow and acoustic fields may produce high amplitude acoustic pressure pulsations. For the quarter-wave resonator, this interaction can turn the silencer into a noise generator, while for systems where a valve is located at the closed end of the side branch the large pressure pulsations can cause the valve to fail. This phenomenon is not limited to automotive applications, and also occurs in natural gas pipelines, aircraft, and numerous other internal and external flows.
X